EPC-Derived Microvesicles Protect Cardiomyocytes from Ang II-Induced Hypertrophy and Apoptosis

نویسندگان

  • Shenhong Gu
  • Wei Zhang
  • Ji Chen
  • Ruilian Ma
  • Xiang Xiao
  • Xiaotang Ma
  • Zhen Yao
  • Yanfang Chen
چکیده

Cell-released microvesicles (MVs) represent a novel way of cell-to-cell communication. Previous evidence indicates that endothelial progenitor cells (EPCs)-derived MVs can modulate endothelial cell survival and proliferation. In this study, we evaluated whether EPC-MVs protect cardiomyocytes (CMs) against angiotensin II (Ang II)-induced hypertrophy and apoptosis. The H9c2 CMs were exposed to Ang II in the presence or absence of EPC-MVs. Cell viability, apoptosis, surface area and β-myosin heavy chain (β-MHC) expression were analyzed. Meanwhile, reactive oxygen species (ROS), serine/threonine kinase (Akt), endothelial nitric oxide synthase (eNOS), and their phosphorylated proteins (p-Akt, p-eNOS) were measured. Phosphatidylinositol-3-kinase (PI3K) and NOS inhibitors were used for pathway verification. The role of MV-carried RNAs in mediating these effects was also explored. Results showed 1) EPC-MVs were able to protect CMs against Ang II-induced changes in cell viability, apoptosis, surface area, β-MHC expression and ROS over-production; 2) The effects were accompanied with the up-regulation of Akt/p-Akt and its downstream eNOS/p-eNOS, and were abolished by PI3K inhibition or partially blocked by NOS inhibition; 3) Depletion of RNAs from EPC-MVs partially or totally eliminated the effects of EPC-MVs. Our data indicate that EPC-MVs protect CMs from hypertrophy and apoptosis through activating the PI3K/Akt/eNOS pathway via the RNAs carried by EPC-MVs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy.

Identifying the key factor mediating pathological cardiac hypertrophy is critically important for developing the strategy to protect against heart failure. Bone morphogenetic protein-4 (BMP4) is a mechanosensitive and proinflammatory gene. In this study, we investigated the role of BMP4 in cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. The in vi...

متن کامل

Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways

Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)-induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart-derived H9c2 cells were stimulated by Ang II, with ...

متن کامل

Effect of ligustilide on Ang II-induced hypertrophy in cardiomyocytes and the potential mechanisms

The aim of the present study was to investigate the effect of ligustilide (LIG) on angiotensin II (Ang II)-induced hypertrophy in neonatal rat myocardial cells and the expression levels of p53, Bcl-2 and Bax. Myocardial cells were isolated and purified from the ventricles of neonate Sprague-Dawley rats (age, 1-3 days) using a differential adhesion method. The cells were then were stimulated by ...

متن کامل

Crucial Role of ROCK2-Mediated Phosphorylation and Upregulation of FHOD3 in the Pathogenesis of Angiotensin II-Induced Cardiac Hypertrophy.

Cardiac hypertrophy is characterized by increased myofibrillogenesis. Angiotensin II (Ang-II) is an essential mediator of the pressure overload-induced cardiac hypertrophy in part through RhoA/ROCK (small GTPase/Rho-associated coiled-coil containing protein kinase) pathway. FHOD3 (formin homology 2 domain containing 3), a cardiac-restricted member of diaphanous-related formins, is crucial in re...

متن کامل

Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy.

Pathophysiological cardiac hypertrophy is one of the most common causes of heart failure. Epoxyeicosatrienoic acids, hydrolyzed and degraded by soluble epoxide hydrolase (sEH), can function as endothelium-derived hyperpolarizing factors to induce dilation of coronary arteries and thus are cardioprotective. In this study, we investigated the role of sEH in two rodent models of angiotensin II (An...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014